Your browser doesn't support javascript.
loading
Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing.
Klaproth-Andrade, Daniela; Hingerl, Johannes; Bruns, Yanik; Smith, Nicholas H; Träuble, Jakob; Wilhelm, Mathias; Gagneur, Julien.
Afiliación
  • Klaproth-Andrade D; Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
  • Hingerl J; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
  • Bruns Y; Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
  • Smith NH; Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
  • Träuble J; Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
  • Wilhelm M; Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
  • Gagneur J; Munich Data Science Institute, Technical University of Munich, Garching, Germany. mathias.wilhelm@tum.de.
Nat Commun ; 15(1): 151, 2024 Jan 02.
Article en En | MEDLINE | ID: mdl-38167372
ABSTRACT
Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido