Your browser doesn't support javascript.
loading
The logic of recurrent circuits in the primary visual cortex.
Oldenburg, Ian Antón; Hendricks, William D; Handy, Gregory; Shamardani, Kiarash; Bounds, Hayley A; Doiron, Brent; Adesnik, Hillel.
Afiliación
  • Oldenburg IA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. ian.oldenburg@rutgers.edu.
  • Hendricks WD; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA. ian.oldenburg@rutgers.edu.
  • Handy G; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA. ian.oldenburg@rutgers.edu.
  • Shamardani K; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
  • Bounds HA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Doiron B; Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA. ghandy@umn.edu.
  • Adesnik H; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA. ghandy@umn.edu.
Nat Neurosci ; 27(1): 137-147, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38172437
ABSTRACT
Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Visual Primaria / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Visual Primaria / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos