Your browser doesn't support javascript.
loading
Adapting Crystal Structure and Grain Boundaries through Sm3+ Doping in Na3Zr2Si2PO4 for Boosting Applicability in Sodium Solid-State Batteries.
Wang, Peifeng; Niu, Yao; Zhang, Kai; Hou, Wenqiang; Yao, Xianghua; Xu, Youlong.
Afiliación
  • Wang P; Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Niu Y; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Zhang K; Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Hou W; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Yao X; Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Xu Y; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
ACS Appl Mater Interfaces ; 16(2): 2877-2887, 2024 Jan 17.
Article en En | MEDLINE | ID: mdl-38174722
ABSTRACT
Solid-state sodium batteries represent a highly promising option for future electrochemical energy storage applications. The ionic conductivity of solid-state electrolytes is one of the significant factors limiting the development of solid-state batteries. In this study, we establish that Sm3+ doping effectively boosts the ionic conductivity of Na3Zr2Si2PO12 (NZSP). The optimal composition, Na3.2Zr1.8Sm0.2Si2-PO12 (NZSP-S20), exhibits a total conductivity of 1.87 mS cm-1 at 23 °C. Structural and microscopic morphology analyses reveal that Sm3+ doping enhances the ionic conductivity of NZSP through structural modulation, phase fraction adjustment, and grain size reduction. High-frequency impedance spectroscopy (40 Hz to 110 MHz) demonstrates that bulk and grain boundaries contribute 49.4 and 50.6%, respectively, to the total conductivity. The structural and microscopic morphology analyses reveal that Sm3+ doping enhances the ionic conductivity of NZSP. Furthermore, the critical current density (CCD) attained in the symmetric cell, assembled by using NZSP-S20 as the solid-state electrolyte and NaSn alloy as the electrode, reaches 2.2 mA cm-1. These results furnish a theoretical foundation for comprehending the modification of solid-state electrolytes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China
...