Your browser doesn't support javascript.
loading
ITGB1 and DDR activation as novel mediators in acquired resistance to osimertinib and MEK inhibitors in EGFR-mutant NSCLC.
De Rosa, Caterina; De Rosa, Viviana; Tuccillo, Concetta; Tirino, Virginia; Amato, Luisa; Papaccio, Federica; Ciardiello, Davide; Napolitano, Stefania; Martini, Giulia; Ciardiello, Fortunato; Morgillo, Floriana; Iommelli, Francesca; Della Corte, Carminia Maria.
Afiliación
  • De Rosa C; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • De Rosa V; Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy.
  • Tuccillo C; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Tirino V; Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Amato L; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Papaccio F; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
  • Ciardiello D; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
  • Napolitano S; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Martini G; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Ciardiello F; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Morgillo F; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
  • Iommelli F; Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy.
  • Della Corte CM; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy. carminiamaria.dellacorte@unicampania.it.
Sci Rep ; 14(1): 500, 2024 01 04.
Article en En | MEDLINE | ID: mdl-38177190
ABSTRACT
Osimertinib is a third-generation tyrosine kinase inhibitor clinically approved for first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC) patients. Although an impressive drug response is initially observed, in most of tumors, resistance occurs after different time and an alternative therapeutic strategy to induce regression disease is currently lacking. The hyperactivation of MEK/MAPKs, is one the most common event identified in osimertinib-resistant (OR) NSCLC cells. However, in response to selective drug pressure, the occurrence of multiple mechanisms of resistance may contribute to treatment failure. In particular, the epithelial-to-mesenchymal transition (EMT) and the impaired DNA damage repair (DDR) pathways are recognized as additional cause of resistance in NSCLC thus promoting tumor progression. Here we showed that concurrent upregulation of ITGB1 and DDR family proteins may be associated with an increase of EMT pathways and linked to both osimertinib and MEK inhibitor resistance to cell death. Furthermore, this study demonstrated the existence of an interplay between ITGB1 and DDR and highlighted, for the first time, that combined treatment of MEK inhibitor with DDRi may be relevant to downregulate ITGB1 levels and increase cell death in OR NSCLC cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Italia
...