Your browser doesn't support javascript.
loading
Multimodal imaging measures in the prediction of clinical response to deep brain stimulation for refractory depression: A machine learning approach.
Ramasubbu, Rajamannar; Brown, Elliot C; Mouches, Pauline; Moore, Jasmine A; Clark, Darren L; Molnar, Christine P; Kiss, Zelma H T; Forkert, Nils D.
Afiliación
  • Ramasubbu R; Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada.
  • Brown EC; Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
  • Mouches P; School of Health and Care Management, Arden University, Berlin, Germany.
  • Moore JA; Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada.
  • Clark DL; Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada.
  • Molnar CP; Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada.
  • Kiss ZHT; Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
  • Forkert ND; Department of Radiology, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada.
World J Biol Psychiatry ; 25(3): 175-187, 2024 03.
Article en En | MEDLINE | ID: mdl-38185882
ABSTRACT

OBJECTIVES:

This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD).

METHODS:

Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation.

RESULTS:

The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model.

CONCLUSIONS:

CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration ClinicalTrials.gov (#NCT01983904).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estimulación Encefálica Profunda / Trastorno Depresivo Resistente al Tratamiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: World J Biol Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estimulación Encefálica Profunda / Trastorno Depresivo Resistente al Tratamiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: World J Biol Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido