Your browser doesn't support javascript.
loading
Synthesis of a high-iron fly-ash-based Na-X molecular sieve and its application in the adsorption of low concentration of CO2.
Guo, Jiaxing; Wu, Hong; Wei, Yao; Miao, Yingju; Qu, Jingyuan; Wang, Ping.
Afiliación
  • Guo J; College of Environmental and Chemical Engineering, Dalian University Dalian Liaoning China.
  • Wu H; College of Chemical and Materials Engineering, Liupanshui Normal University Liupanshui Guizhou China.
  • Wei Y; College of Environmental and Chemical Engineering, Dalian University Dalian Liaoning China.
  • Miao Y; College of Chemical and Materials Engineering, Liupanshui Normal University Liupanshui Guizhou China.
  • Qu J; College of Environmental and Chemical Engineering, Dalian University Dalian Liaoning China.
  • Wang P; College of Chemical and Materials Engineering, Liupanshui Normal University Liupanshui Guizhou China.
RSC Adv ; 14(3): 1686-1696, 2024 Jan 03.
Article en En | MEDLINE | ID: mdl-38187452
ABSTRACT
In addressing the environmental challenges posed by the accumulation of fly ash (FA), efforts have been geared towards its high-value utilization. By the use of high-iron FA as a raw material, a high-iron fly-ash-based Na-X molecular sieve was successfully synthesized by hydrothermal method. We combined pretreatment methods such as high-temperature calcination, acid leaching and alkali fusion activation. The as-synthesized product was used for the adsorption of a low concentration of CO2, and the adsorption data were fitted by a physical model. The changes in iron content in pretreatment and molecular sieve synthesis were revealed by SEM-mapping, UV-Raman and UV-Vis. The results showed that the pretreatment process reduces the iron content from 32.3% to 13.3%, and converts the inactive phases to active phases, with n (SiO2/Al2O3) = 4.94. The activated product was transformed further to a Na-X molecular sieve using a hydrothermal method. The product has a single crystal phase and octahedral crystal structure. Its specific surface area was 646.634 m2 g-1, and micropores were distributed between 0.46 nm and 0.71 nm, with a mesoporous phase of 4.6 nm. When used to adsorb a low concentration of CO2, the Na-X molecular sieve has a high adsorption capacity of 3.70 mmol g-1, which reaches 95.11% that of the commercial Na-X molecular sieve. The adsorption breakthrough time and adsorption capacity decreased with an increase in temperature. The adsorption kinetics were consistent with the Bangham model for surface pore adsorption and Weber-Morris model for internal diffusion. During the synthesis process, iron was converted from highly dispersed iron oxide to four-coordinated framework iron. Thus, this paper paves a path for the high-quality transformation and utilization of high-iron fly-ash.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido