Your browser doesn't support javascript.
loading
Platform-independent estimation of human physiological time from single blood samples.
Huang, Yitong; Braun, Rosemary.
Afiliación
  • Huang Y; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.
  • Braun R; National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A ; 121(3): e2308114120, 2024 Jan 16.
Article en En | MEDLINE | ID: mdl-38190520
ABSTRACT
Abundant epidemiological evidence links circadian rhythms to human health, from heart disease to neurodegeneration. Accurate determination of an individual's circadian phase is critical for precision diagnostics and personalized timing of therapeutic interventions. To date, however, we still lack an assay for physiological time that is accurate, minimally burdensome to the patient, and readily generalizable to new data. Here, we present TimeMachine, an algorithm to predict the human circadian phase using gene expression in peripheral blood mononuclear cells from a single blood draw. Once trained on data from a single study, we validated the trained predictor against four independent datasets with distinct experimental protocols and assay platforms, demonstrating that it can be applied generalizably. Importantly, TimeMachine predicted circadian time with a median absolute error ranging from 1.65 to 2.7 h, regardless of systematic differences in experimental protocol and assay platform, without renormalizing the data or retraining the predictor. This feature enables it to be flexibly applied to both new samples and existing data without limitations on the transcriptomic profiling technology (microarray, RNAseq). We benchmark TimeMachine against competing approaches and identify the algorithmic features that contribute to its performance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Leucocitos Mononucleares Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Leucocitos Mononucleares Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos