Your browser doesn't support javascript.
loading
Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
Yang, Mingchen; Hu, Yin; Wang, Xiaoliang; Chen, Hua; Yu, Jiangtao; Li, Weizheng; Li, Runyin; Yan, Feng.
Afiliación
  • Yang M; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Hu Y; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Wang X; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Chen H; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yu J; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Li W; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Li R; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Yan F; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Adv Mater ; 36(16): e2312249, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38193634
ABSTRACT
Ionic thermocells convert heat into electricity and are promising power sources for electronic devices. However, discontinuous and small electricity output limits practical use under varying environmental conditions. Here, a thermogalvanic ionogel with a high Seebeck coefficient (32.4 mV K-1) is designed. Thermocells that combine thermogalvanic ionogel-based thermocells, which realize all-weather power generation via passive radiative cooling, are also developed. These thermocells generate electricity continuously under varying weather conditions and over a wide temperature range (-40 to 90 °C), with a normalized power density of 25.84 mW m-2 K-2. Advanced characterization shows that the chaotropic effect enhances the Seebeck coefficient, while the self-supplying temperature difference given the radiative cooling structure enables all-weather power generation. These results provide an effective strategy for developing practical thermocells suitable for diverse daily and seasonal variations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China