Your browser doesn't support javascript.
loading
Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating.
Michelson, Aaron; Subramanian, Ashwanth; Kisslinger, Kim; Tiwale, Nikhil; Xiang, Shuting; Shen, Eric; Kahn, Jason S; Nykypanchuk, Dmytro; Yan, Hanfei; Nam, Chang-Yong; Gang, Oleg.
Afiliación
  • Michelson A; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Subramanian A; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
  • Kisslinger K; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
  • Tiwale N; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Xiang S; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Shen E; Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA.
  • Kahn JS; Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA.
  • Nykypanchuk D; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Yan H; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Nam CY; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Gang O; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Article en En | MEDLINE | ID: mdl-38198553
ABSTRACT
Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos