Your browser doesn't support javascript.
loading
Perforin-Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance-Configurable Materials.
Wang, Hairong; Tan, Shujun; Su, Zhenhua; Li, Mingfei; Hao, Xiang; Peng, Feng.
Afiliación
  • Wang H; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China.
  • Tan S; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China.
  • Su Z; China National Pulp and Paper Research Institute, Beijing, 100102, China.
  • Li M; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China.
  • Hao X; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China.
  • Peng F; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China.
Adv Mater ; 36(15): e2311073, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38199249
ABSTRACT
Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania