Your browser doesn't support javascript.
loading
Stability Study Through Water Activity Measurements for Dispensed Powdered Raw Materials.
Prada-Ramírez, Harold A; Montes-Tamara, Juan Pablo; Rico-Jimenez, Eduardo A; Fonseca, Juan Camilo.
Afiliación
  • Prada-Ramírez HA; Laboratorios Coaspharma S.A.S., CL 18A 28A-43, Bogota 111411, Colombia.
  • Montes-Tamara JP; Universidad de Sucre, Departamento de Biología y Química, Facultad de Educación y Ciencias, 28 #5-267, Campus Red Door, Bogotá 700003, Colombia.
  • Rico-Jimenez EA; Laboratorios Coaspharma S.A.S., CL 18A 28A-43, Bogota 111411, Colombia.
  • Fonseca JC; Laboratorios Coaspharma S.A.S., CL 18A 28A-43, Bogota 111411, Colombia.
J AOAC Int ; 107(3): 487-492, 2024 May 02.
Article en En | MEDLINE | ID: mdl-38218727
ABSTRACT

BACKGROUND:

Holding times for raw materials are relevant since they enable us to understand the allowable time that a raw material can be kept under ideal storage conditions before the start of the manufacturing process without its quality attributes being affected. The quantification of water activity can be used as an indicator of the microbiological, physicochemical, and organoleptic stability of a specimen, since low water activity retards autohydrolysis and microbiological growth.

OBJECTIVE:

The main purpose of this investigation was to test the stability of powdered raw materials for a maximum holding time of 8 days through water activity measurements. Thus microbiological, physicochemical, and organoleptic measurements were carried out in parallel and simultaneously to experimentally establish a relationship between the status of the water activity of processed raw materials and the microbiological, physicochemical, and organoleptic results.

METHODS:

The raw materials were stored for a maximum holding time of 8 days, in accordance with United States Pharmacopeia monographs. For all the raw materials tested, water activity measurements were performed using the dew point chilled-mirror method on days 0, 3, and 8. On days 0 and 8, microbiological, physicochemical, and organoleptic assessments were performed.

RESULTS:

It was established that under these storage conditions, the processed raw materials exhibited water activity below 0.60 during the entire holding time. However, there were statistically significant differences in water activity levels between days 0, 3, and 8 (ANOVA P < 0.05). Despite observing statistically significant differences between days, the microbiological, physicochemical, and organoleptic features were within specification at those water activity levels below 0.60.

CONCLUSIONS:

Water activity below 0.60 does not allow the growth of microorganisms, and the organoleptic and physicochemical features remain unperturbed. The results indicate that water activity can be used as an indicator of the microbiological load and chemical stability of the raw materials tested. HIGHLIGHTS This research provides evidence that corroborates that water activity status may be used as a reliable indicator for the microbiological burden and physicochemical features of pharmaceutical material during stability studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polvos / Agua Idioma: En Revista: J AOAC Int Año: 2024 Tipo del documento: Article País de afiliación: Colombia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polvos / Agua Idioma: En Revista: J AOAC Int Año: 2024 Tipo del documento: Article País de afiliación: Colombia Pais de publicación: Reino Unido