Your browser doesn't support javascript.
loading
A mesoporous gold biosensor to investigate immune checkpoint protein heterogeneity in single lung cancer cells.
Ahmed, Emtiaz; Masud, Mostafa Kamal; Komatineni, Prathyusha; Dey, Shuvashis; Lobb, Richard; Hossain, Md Shahriar A; Möller, Andreas; Yamauchi, Yusuke; Sina, Abu Ali Ibn; Trau, Matt.
Afiliación
  • Ahmed E; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Masud MK; Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Komatineni P; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Dey S; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Lobb R; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Hossain MSA; Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The Univers
  • Möller A; Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
  • Yamauchi Y; Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
  • Sina AA; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia. Electronic address: a.sina@uq.edu.au.
  • Trau M; Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD
Biosens Bioelectron ; 249: 115984, 2024 Apr 01.
Article en En | MEDLINE | ID: mdl-38219464
ABSTRACT
Immune checkpoint proteins (ICPs) play a major role in a patient's immune response against cancer. Tumour cells usually express those proteins to communicate with immune cells as a process of escaping the anti-cancer immune response. Detecting the major functional immune checkpoint proteins present on cancer cells (such as circulating tumor cells or CTCs) and examining the heterogeneity in their expression at the single-cell level could play a crucial role in both cancer diagnosis and the monitoring of therapy. In this study, we develop a mesoporous gold biosensor to precisely assess ICP heterogeneity in individual cancer cells within a lung cancer model. The platform utilizes a nanostructured mesoporous gold surface to capture CTCs and a Surface Enhanced Raman Scattering (SERS) readout to identify and monitor the expression of key ICP proteins (PD-L1, B7H4, CD276, CD80) in lung cancer cells. The homogeneous and abundant pores in mesoporous 3D gold nanostructures enable increased antibody loading on-chip and an enhanced SERS signal, which are key to our single cell capture, and accurate analysis of ICPs in cancer cells with high sensitivity. Our lung cancer cell line model data showed that our method can detect single cells and analyse the expression of four lung cancer associated ICPs on individual cell surfaces during treatment. To show the potential of our mesoporous gold biosensor in analysing clinical samples, we tested 9 longitudinal Peripheral Blood Mononuclear Cells (PBMC) samples from lung cancer patient before and after therapy. Our mesoporous biosensor successfully captured single CTCs and found that the expression of ICPs in CTCs is highly heterogeneous in both pre-treatment and treated PBMC samples isolated from lung cancer patient blood. We suggest that our findings will help clinicians in selecting the most appropriate therapy for patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Neoplasias Pulmonares / Células Neoplásicas Circulantes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Neoplasias Pulmonares / Células Neoplásicas Circulantes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia
...