Your browser doesn't support javascript.
loading
Biochemical and physiological alterations caused by Diuron and Triclosan in mussels (Mytilus galloprovincialis).
Bouzidi, Imen; Mougin, Karine; Beyrem, Hamouda; Sellami, Badreddine.
Afiliación
  • Bouzidi I; University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia; Institut supérieur de biotechnologies de Béja, Université de Jendouba, Tunisia.
  • Mougin K; Université de Strasbourg, Université de Haute Alsace, Institut de Science des Matériaux, IS2M CNRS-UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France.
  • Beyrem H; University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
  • Sellami B; Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia. Electronic address: badreddine.sellami@gmail.com.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38225063
ABSTRACT
The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plaguicidas / Triclosán / Contaminantes Químicos del Agua / Mytilus Límite: Animals Idioma: En Revista: Pestic Biochem Physiol Año: 2024 Tipo del documento: Article País de afiliación: Túnez Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plaguicidas / Triclosán / Contaminantes Químicos del Agua / Mytilus Límite: Animals Idioma: En Revista: Pestic Biochem Physiol Año: 2024 Tipo del documento: Article País de afiliación: Túnez Pais de publicación: Estados Unidos