Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO2 Electroreduction at Ampere-Level Current.
Angew Chem Int Ed Engl
; 63(10): e202318338, 2024 Mar 04.
Article
en En
| MEDLINE
| ID: mdl-38230982
ABSTRACT
Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3â
min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06â
A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Alemania