Your browser doesn't support javascript.
loading
A machine learning approach for real-time cortical state estimation.
Weiss, David A; Borsa, Adriano Mf; Pala, Aurélie; Sederberg, Audrey J; Stanley, Garrett B.
Afiliación
  • Weiss DA; Program in Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
  • Borsa AM; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.
  • Pala A; Program in Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
  • Sederberg AJ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
  • Stanley GB; Department of Biology, Emory University, Atlanta, GA, United States of America.
J Neural Eng ; 21(1)2024 02 01.
Article en En | MEDLINE | ID: mdl-38232377
ABSTRACT
Objective.Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation.Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments.Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data.Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interfaces Cerebro-Computador Tipo de estudio: Prognostic_studies Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interfaces Cerebro-Computador Tipo de estudio: Prognostic_studies Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos