Your browser doesn't support javascript.
loading
Immobilization of Thermoplasma acidophilum Glucose Dehydrogenase and Isocitrate Dehydrogenase Through Enzyme-Inorganic Hybrid Nanocrystal Formation.
Oshima, Shusuke; Oku, Yuri; T Sriwong, Kotchakorn; Kimura, Yutaro; Matsuda, Tomoko.
Afiliación
  • Oshima S; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, 226-8501, Japan.
  • Oku Y; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, 226-8501, Japan.
  • T Sriwong K; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, 226-8501, Japan.
  • Kimura Y; Department of Chemistry and California Institute for Quantitative Bioscience, University of California, Berkeley, Berkeley, California, 94720, USA.
  • Matsuda T; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, 226-8501, Japan.
Curr Microbiol ; 81(2): 67, 2024 Jan 18.
Article en En | MEDLINE | ID: mdl-38236425
ABSTRACT
The development of green catalysts, specifically biocatalysts, is crucial for building a sustainable society. To enhance the versatility of biocatalysts, the immobilization of enzymes plays a vital role as it improves their recyclability and robustness. As target enzymes to immobilize, glucose dehydrogenases and carboxylases are particularly important among various kinds of enzymes due to their involvement in two significant reactions regeneration of the reduced form of coenzyme required for various reactions, and carboxylation reactions utilizing CO2 as a substrate, respectively. In this study, we immobilized Thermoplasma acidophilum glucose dehydrogenase (TaGDH) and T. acidophilum isocitrate dehydrogenase (TaIDH) using a previously reported method involving the formation of enzyme-inorganic hybrid nanocrystals, in the course of our continuing study focusing on carboxylation catalyzed by the free form of TaGDH and TaIDH. Subsequently, we investigated the properties of the resulting immobilized enzymes. Our results indicate the successful immobilization of TaGDH and TaIDH through the formation of hybrid nanocrystals utilizing Mn2+. The immobilization process enhanced TaIDH activity, up to 211%, while TaGDH retained 71% of its original activity. Notably, the immobilized TaGDH exhibited higher activity at temperatures exceeding 87 °C than the free TaGDH. Moreover, these immobilized enzymes could be recycled. Finally, we successfully utilized the immobilized enzymes for the carboxylation of 2-ketoglutaric acid under 1 MPa CO2. In conclusion, this study represents the first immobilization of TaGDH and TaIDH using the hybrid nanocrystal forming method. Furthermore, we achieved significant activity enhancement of TaIDH through immobilization and demonstrated the recyclability of the immobilized enzymes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucosa 1-Deshidrogenasa / Nanopartículas Idioma: En Revista: Curr Microbiol Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucosa 1-Deshidrogenasa / Nanopartículas Idioma: En Revista: Curr Microbiol Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos