Your browser doesn't support javascript.
loading
High-resolution assessment of multidimensional cellular mechanics using label-free refractive-index traction force microscopy.
Lee, Moosung; Jeong, Hyuntae; Lee, Chaeyeon; Lee, Mahn Jae; Delmo, Benedict Reve; Heo, Won Do; Shin, Jennifer H; Park, YongKeun.
Afiliación
  • Lee M; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
  • Jeong H; KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
  • Lee C; Institute for Functional Matter and Quantum Technologies, Universität Stuttgart, 70569, Stuttgart, Germany.
  • Lee MJ; Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
  • Delmo BR; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
  • Heo WD; KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
  • Shin JH; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
  • Park Y; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
Commun Biol ; 7(1): 115, 2024 01 20.
Article en En | MEDLINE | ID: mdl-38245624
ABSTRACT
A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tracción / Fenómenos Mecánicos Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tracción / Fenómenos Mecánicos Idioma: En Revista: Commun Biol Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido