Your browser doesn't support javascript.
loading
Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model.
He, Songzhe; Qu, Qi; Chen, Xi; Zhao, Li; Jiao, Zhigang; Wan, Zhiting; Kwok, Hang Fai; Qu, Shaogang.
Afiliación
  • He S; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Educ
  • Qu Q; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Educ
  • Chen X; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Educ
  • Zhao L; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Educ
  • Jiao Z; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  • Wan Z; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Educ
  • Kwok HF; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region 999078, China.
  • Qu S; Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and
Ecotoxicol Environ Saf ; 271: 115995, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38245935
ABSTRACT
Fenpropathrin (Fen), a volatile pyrethroid insecticide, is used widely for agricultural applications and has been reported to increase the risk of Parkinson's disease (PD). However, the molecular basis, underlying mechanisms, and pathophysiology of Fen-exposed Parkinsonism remain unknown. Recent studies have revealed epigenetic mechanisms underlying PD-related pathway regulation, including DNA methylation. Epigenetic mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. After whole-genome bisulfite sequencing (WGBS) of midbrain tissues from a Fen-exposed PD-like mouse model, we performed an association analysis of DNA methylation and gene expression. Then we successfully screened for the DNA methylation differential gene Ambra1, which is closely related to PD. The hypermethylation-low expression Ambra1 gene aggravated DA neuron damage in vitro and in vivo through the Ambra1/Parkin/LC3B-mediated mitophagy pathway. We administered 5-aza-2'-deoxycytidine (5-Aza-dC) to upregulate Ambra1 expression, thereby reducing Ambra1-mediated mitophagy and protecting DA neurons against Fen-induced damage. In conclusion, these findings elucidate the potential function of Ambra1 under the regulation of DNA methylation, suggesting that the inhibition of DNA methylation may alleviate Fen-exposed neuron damage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Piretrinas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Piretrinas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article