Your browser doesn't support javascript.
loading
Harnessing High-Throughput Computational Methods to Accelerate the Discovery of Optimal Proton Conductors for High-Performance and Durable Protonic Ceramic Electrochemical Cells.
Luo, Zheyu; Hu, Xueyu; Zhou, Yucun; Ding, Yong; Zhang, Weilin; Li, Tongtong; Liu, Meilin.
Afiliación
  • Luo Z; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Hu X; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Zhou Y; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Ding Y; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Zhang W; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Li T; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
  • Liu M; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
Adv Mater ; 36(18): e2311159, 2024 May.
Article en En | MEDLINE | ID: mdl-38251928
ABSTRACT
The pursuit of high-performance and long-lasting protonic ceramic electrochemical cells (PCECs) is impeded by the lack of efficient and enduring proton conductors. Conventional research approaches, predominantly based on a trial-and-error methodology, have proven to be demanding of resources and time-consuming. Here, this work reports the findings in harnessing high-throughput computational methods to expedite the discovery of optimal electrolytes for PCECs. This work methodically computes the oxygen vacancy formation energy (EV), hydration energy (EH), and the adsorption energies of H2O and CO2 for a set of 932 oxide candidates. Notably, these findings highlight BaSnxCe0.8-xYb0.2O3-δ (BSCYb) as a prospective game-changing contender, displaying superior proton conductivity and chemical resilience when compared to the well-regarded BaZrxCe0.8-xY0.1Yb0.1O3-δ (BZCYYb) series. Experimental validations substantiate the computational predictions; PCECs incorporating BSCYb as the electrolyte achieved extraordinary peak power densities in the fuel cell mode (0.52 and 1.57 W cm-2 at 450 and 600 °C, respectively), a current density of 2.62 A cm-2 at 1.3 V and 600 °C in the electrolysis mode while demonstrating exceptional durability for over 1000-h when exposed to 50% H2O. This research underscores the transformative potential of high-throughput computational techniques in advancing the field of proton-conducting oxides for sustainable power generation and hydrogen production.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania