Your browser doesn't support javascript.
loading
Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids.
Yang, Xiao; Forró, Csaba; Li, Thomas L; Miura, Yuki; Zaluska, Tomasz J; Tsai, Ching-Ting; Kanton, Sabina; McQueen, James P; Chen, Xiaoyu; Mollo, Valentina; Santoro, Francesca; Pașca, Sergiu P; Cui, Bianxiao.
Afiliación
  • Yang X; Department of Chemistry, Stanford University, Stanford, CA, USA.
  • Forró C; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
  • Li TL; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
  • Miura Y; Department of Chemistry, Stanford University, Stanford, CA, USA.
  • Zaluska TJ; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
  • Tsai CT; Institute for Biological I nformation Processing-Bioelectronics, IBI-3, Forschungszentrum Jülich, Jülich, Germany.
  • Kanton S; Department of Chemistry, Stanford University, Stanford, CA, USA.
  • McQueen JP; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
  • Chen X; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
  • Mollo V; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
  • Santoro F; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.
  • Pașca SP; Department of Chemistry, Stanford University, Stanford, CA, USA.
  • Cui B; Department of Chemistry, Stanford University, Stanford, CA, USA.
Nat Biotechnol ; 2024 Jan 22.
Article en En | MEDLINE | ID: mdl-38253880
ABSTRACT
Realizing the full potential of organoids and assembloids to model neural development and disease will require improved methods for long-term, minimally invasive recording of electrical activity. Current technologies, such as patch clamp, penetrating microelectrodes, planar electrode arrays and substrate-attached flexible electrodes, do not allow chronic recording of organoids in suspension, which is necessary to preserve architecture. Inspired by kirigami art, we developed flexible electronics that transition from a two-dimensional to a three-dimensional basket-like configuration with either spiral or honeycomb patterns to accommodate the long-term culture of organoids in suspension. Here we show that this platform, named kirigami electronics (KiriE), integrates with and enables chronic recording of cortical organoids for up to 120 days while preserving their morphology, cytoarchitecture and cell composition. We demonstrate integration of KiriE with optogenetic and pharmacological manipulation and modeling phenotypes related to a genetic disease. Moreover, KiriE can capture corticostriatal connectivity in assembloids following optogenetic stimulation. Thus, KiriE will enable investigation of disease and activity patterns underlying nervous system assembly.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos