Temporal Phenotyping for End-Stage Renal Disease Using Longitudinal Electronic Health Records.
Stud Health Technol Inform
; 310: 264-268, 2024 Jan 25.
Article
en En
| MEDLINE
| ID: mdl-38269806
ABSTRACT
End Stage Renal Disease (ESRD) is a highly heterogeneous disease with significant differences in prevalence, mortality, complications, and treatment modalities across age, sex, race, and ethnicity. An improved knowledge of disease characteristics results from the use of a data-driven phenotypic classification strategy to identify patients of different subtypes and expose the clinical traits of different subtypes. This study used topic models and process mining techniques to perform subtyping of ESRD patients on hemodialysis based on real-world longitudinal electronic health record data. The mined subtypes are interpretable and clinically significant, and they can reflect differences in the progression of the disease state and clinical outcomes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Registros Electrónicos de Salud
/
Fallo Renal Crónico
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos