Your browser doesn't support javascript.
loading
Temporal Phenotyping for End-Stage Renal Disease Using Longitudinal Electronic Health Records.
Chi, Shengqiang; Wang, Feng; Li, Xueyao; Xu, Minghong; Li, Jingsong.
Afiliación
  • Chi S; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
  • Wang F; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
  • Li X; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
  • Xu M; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
  • Li J; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
Stud Health Technol Inform ; 310: 264-268, 2024 Jan 25.
Article en En | MEDLINE | ID: mdl-38269806
ABSTRACT
End Stage Renal Disease (ESRD) is a highly heterogeneous disease with significant differences in prevalence, mortality, complications, and treatment modalities across age, sex, race, and ethnicity. An improved knowledge of disease characteristics results from the use of a data-driven phenotypic classification strategy to identify patients of different subtypes and expose the clinical traits of different subtypes. This study used topic models and process mining techniques to perform subtyping of ESRD patients on hemodialysis based on real-world longitudinal electronic health record data. The mined subtypes are interpretable and clinically significant, and they can reflect differences in the progression of the disease state and clinical outcomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Registros Electrónicos de Salud / Fallo Renal Crónico Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Registros Electrónicos de Salud / Fallo Renal Crónico Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos