Your browser doesn't support javascript.
loading
Hierarchical Label Distribution Learning for Disease Prediction.
Ren, Yi; Xia, Jing; Yu, Ziyi; Zhang, Zhenchuan; Zhou, Tianshu; Tian, Yu; Li, Jingsong.
Afiliación
  • Ren Y; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
  • Xia J; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
  • Yu Z; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
  • Zhang Z; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
  • Zhou T; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
  • Tian Y; Engineering Research Center of EMR And Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
  • Li J; Research Center for Healthcare Data Science, Zhejiang Laboratory, Hangzhou, China.
Stud Health Technol Inform ; 310: 755-759, 2024 Jan 25.
Article en En | MEDLINE | ID: mdl-38269910
ABSTRACT
The prediction of disease can facilitate early intervention, comprehensive diagnosis and treatment, thereby benefiting healthcare and reducing medical costs. While single class and multi-class learning methods have been applied for disease prediction, they are inadequate in distinguishing between primary and secondary diagnoses, which is crucial for treatments. In this paper, label distribution is suggested to describe the diagnosis, which assigns the description degree to quantify the diagnosis. Additionally, a novel hierarchical label distribution learning (HLDL) model is proposed to make fine-grained predictions based on the hierarchical classification of diseases, taking into account the relationship among diseases. The experimental results on real-world datasets demonstrate that the HLDL model outperforms the baselines with statistical significance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos