Record high external quantum efficiency of 20% achieved in fully solution-processed quantum dot light-emitting diodes based on hole-conductive metal oxides.
J Colloid Interface Sci
; 660: 746-755, 2024 Apr 15.
Article
en En
| MEDLINE
| ID: mdl-38271810
ABSTRACT
Poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOTPSS) has been widely used as a hole injection material in quantum dot (QD) light-emitting diodes (QLEDs). However, it degrades the organic materials and electrodes in QLEDs due to its strong hydroscopicity and acidity. Although hole-conductive metal oxides have a great potential to solve this disadvantage, it is still a challenge to achieve efficient and stable QLEDs by using these solution-processed metal oxides. Herein, the state-of-the-art QLEDs fabricated by using hole-conductive MoOx QDs are achieved. The α-phase MoOx QDs exhibit a monodispersed size distribution with clear and regular crystal lattices, corresponding to high-quality nanocrystals. Meanwhile, the MoOx film owns an excellent transmittance, suitable valence band, good morphology and impressive hole-conductivity, demonstrating that the MoOx film could be used as a hole injection layer in QLEDs. Moreover, the rigid and flexible red QLEDs made by MoOx exhibit peak external quantum efficiencies of over 20%, representing a new record for the hole-conductive metal oxide based QLEDs. Most importantly, the MoOx QDs afford their QLEDs with a longer T95 lifetime than these devices made by PEDOTPSS. As a result, we believe that the MoOx QDs could be used as efficient and stable hole injection materials used in QLEDs.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Estados Unidos