Your browser doesn't support javascript.
loading
GAS5 promotes cytarabine induced myelosuppression via inhibition of hematopoietic stem cell differentiation.
Du, Yin-Xiao; Yang, Jing; Yan, Han; Liu, Yan-Ling; Chen, Xiao-Ping.
Afiliación
  • Du YX; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya
  • Yang J; The First Hospital of Changsha, Changsha, Hunan, China.
  • Yan H; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya
  • Liu YL; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya
  • Chen XP; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya
Toxicol Appl Pharmacol ; 483: 116841, 2024 02.
Article en En | MEDLINE | ID: mdl-38290668
ABSTRACT
Cytarabine (Ara-C) is widely used in the induction chemotherapy for acute myeloid leukemia (AML). Association between LncRNA GAS5 genetic polymorphism and the recovery of hematopoietic function after Ara-C-based chemotherapy is observed. This study aimed to identify whether intervention of GAS5 expression and GAS5 genotype affect Ara-C-induced inhibition of hematopoietic stem cells (HSCs) differentiation. In this study, cord blood-derived CD34+ cells were cultured in vitro, and a cell model of myelosuppression was established by treatment of CD34+ cells with Ara-C. The effect of GAS5 overexpression, Ara-C treatment, and GAS5 rs55829688 genotype on the hematopoietic colony-forming ability of CD34+ cells was assessed using methylcellulose-based colony forming unit assay. GAS5 overexpression slowed down the proliferation of cord blood-derived CD34+ cells significantly (p < 0.05) and decreased their ability to form hematopoietic colonies in vitro. Ara-C significantly reduced the hematopoietic colony-forming ability of CD34+ cells in vitro (p < 0.0001), and overexpressing GAS5 further decreased the number of hematopoietic colonies. GAS5 expression was higher in CD34+ cells than in CD34- cells, and positively correlated with GATA1 mRNA expression in CD34+ cells in vitro culture. However, GAS5 genotype had no effect on the total number of hematopoietic colonies formed from cord blood-derived CD34+ cells. In conclusion, our study highlights that GAS5 inhibited the in vitro proliferation and reduced the hematopoietic colony-forming ability of cord blood-derived CD34+ cells, with the most pronounced effect observed on CFU-GEMM formation. GAS5 also enhanced the inhibitory effect of Ara-C on the in vitro hematopoietic ability of CD34+ HSCs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Citarabina Límite: Humans Idioma: En Revista: Toxicol Appl Pharmacol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Citarabina Límite: Humans Idioma: En Revista: Toxicol Appl Pharmacol Año: 2024 Tipo del documento: Article
...