Your browser doesn't support javascript.
loading
GenomeMUSter mouse genetic variation service enables multitrait, multipopulation data integration and analysis.
Ball, Robyn L; Bogue, Molly A; Liang, Hongping; Srivastava, Anuj; Ashbrook, David G; Lamoureux, Anna; Gerring, Matthew W; Hatoum, Alexander S; Kim, Matthew J; He, Hao; Emerson, Jake; Berger, Alexander K; Walton, David O; Sheppard, Keith; El Kassaby, Baha; Castellanos, Francisco; Kunde-Ramamoorthy, Govindarajan; Lu, Lu; Bluis, John; Desai, Sejal; Sundberg, Beth A; Peltz, Gary; Fang, Zhuoqing; Churchill, Gary A; Williams, Robert W; Agrawal, Arpana; Bult, Carol J; Philip, Vivek M; Chesler, Elissa J.
Afiliación
  • Ball RL; The Jackson Laboratory, Bar Harbor, Maine 04609, USA; Robyn.Ball@jax.org.
  • Bogue MA; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Liang H; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Srivastava A; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Ashbrook DG; University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
  • Lamoureux A; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Gerring MW; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Hatoum AS; Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
  • Kim MJ; Artificial Intelligence and the Internet of Things Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
  • He H; University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
  • Emerson J; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Berger AK; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Walton DO; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Sheppard K; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • El Kassaby B; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Castellanos F; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Kunde-Ramamoorthy G; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Lu L; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Bluis J; University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
  • Desai S; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Sundberg BA; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Peltz G; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Fang Z; Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Churchill GA; Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Williams RW; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Agrawal A; University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
  • Bult CJ; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
  • Philip VM; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
  • Chesler EJ; The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Genome Res ; 34(1): 145-159, 2024 02 07.
Article en En | MEDLINE | ID: mdl-38290977
ABSTRACT
Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Tipo de estudio: Systematic_reviews Límite: Animals / Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Tipo de estudio: Systematic_reviews Límite: Animals / Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos