Your browser doesn't support javascript.
loading
The mechanosensitive Pkd2 channel modulates the recruitment of myosin II and actin to the cytokinetic contractile ring.
bioRxiv ; 2024 Apr 06.
Article en En | MEDLINE | ID: mdl-38293176
ABSTRACT
Cytokinesis, the last step in cell division, separate daughter cells through the force produced by an actomyosin contractile ring assembled at the equatorial plane. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel Pkd2 to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic mutant of the essential pkd2 gene, we examine its potential role in assembling and constricting the contractile ring. The pkd2-81KD mutation significantly increased the number of type II myosin heavy chain Myo2 (+20%), its regulatory light chain Rlc1 (+37%) and actin (+20%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1 . The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium- dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos