Your browser doesn't support javascript.
loading
Non-Equilibrium Assembly of Atomically-Precise Copper Nanoclusters.
Zhao, Peng; Xu, Linjie; Li, Bohan; Zhao, Yuanfeng; Zhao, Yingshuai; Lu, Yan; Cao, Minghui; Li, Guoqi; Weng, Tsu-Chien; Wang, Heng; Zheng, Yijun.
Afiliación
  • Zhao P; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Xu L; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Li B; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Zhao Y; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Zhao Y; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Lu Y; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Cao M; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Li G; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Weng TC; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Wang H; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
  • Zheng Y; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Adv Mater ; 36(28): e2311818, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38294175
ABSTRACT
Accurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically-precise copper nanoclusters (CuNCs), specifically Cu11(µ9-Cl)(µ3-Cl)3L6Cl (L = 4-methyl-piperazine-1-carbodithioate). Cu(I)-ligand ratio change and dynamic Cu(I)-Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)-Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life-like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China