Your browser doesn't support javascript.
loading
Tunneling-Driven Marcus-Inverted Triplet Energy Transfer in a Two-Dimensional Perovskite.
De, Angana; Mora Perez, Carlos; Liang, Aihui; Wang, Kang; Dou, Letian; Prezhdo, Oleg; Huang, Libai.
Afiliación
  • De A; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Mora Perez C; Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
  • Liang A; Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Wang K; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
  • Dou L; Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Prezhdo O; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
  • Huang L; Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
J Am Chem Soc ; 146(6): 4260-4269, 2024 Feb 14.
Article en En | MEDLINE | ID: mdl-38305175
ABSTRACT
Quantum tunneling, a phenomenon that allows particles to pass through potential barriers, can play a critical role in energy transfer processes. Here, we demonstrate that the proper design of organic-inorganic interfaces in two-dimensional (2D) hybrid perovskites allows for efficient triplet energy transfer (TET), where quantum tunneling of the excitons is the key driving force. By employing temperature-dependent and time-resolved photoluminescence and pump-probe spectroscopy techniques, we establish that triplet excitons can transfer from the inorganic lead-iodide sublattices to the pyrene ligands with rapid and weakly temperature-dependent characteristic times of approximately 50 ps. The energy transfer rates obtained based on the Marcus theory and first-principles calculations show good agreement with the experiments, indicating that the efficient tunneling of triplet excitons within the Marcus-inverted regime is facilitated by high-frequency molecular vibrations. These findings offer valuable insights into how one can effectively manipulate the energy landscape in 2D hybrid perovskites for energy transfer and the creation of diverse excitonic states.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc / Journal of the american chemical society / J. am. chem. soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc / Journal of the american chemical society / J. am. chem. soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos