Your browser doesn't support javascript.
loading
Machine Learning Potentials with the Iterative Boltzmann Inversion: Training to Experiment.
Matin, Sakib; Allen, Alice E A; Smith, Justin; Lubbers, Nicholas; Jadrich, Ryan B; Messerly, Richard; Nebgen, Benjamin; Li, Ying Wai; Tretiak, Sergei; Barros, Kipton.
Afiliación
  • Matin S; Department of Physics, Boston University, Boston, Massachusetts 02215, United States.
  • Allen AEA; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Smith J; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Lubbers N; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Jadrich RB; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Messerly R; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Nebgen B; NVIDIA Corp., Santa Clara, California 95051, United States.
  • Li YW; Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Tretiak S; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
  • Barros K; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, United States.
J Chem Theory Comput ; 20(3): 1274-1281, 2024 Feb 13.
Article en En | MEDLINE | ID: mdl-38307009
ABSTRACT
Methodologies for training machine learning potentials (MLPs) with quantum-mechanical simulation data have recently seen tremendous progress. Experimental data have a very different character than simulated data, and most MLP training procedures cannot be easily adapted to incorporate both types of data into the training process. We investigate a training procedure based on iterative Boltzmann inversion that produces a pair potential correction to an existing MLP using equilibrium radial distribution function data. By applying these corrections to an MLP for pure aluminum based on density functional theory, we observe that the resulting model largely addresses previous overstructuring in the melt phase. Interestingly, the corrected MLP also exhibits improved performance in predicting experimental diffusion constants, which are not included in the training procedure. The presented method does not require autodifferentiating through a molecular dynamics solver and does not make assumptions about the MLP architecture. Our results suggest a practical framework for incorporating experimental data into machine learning models to improve the accuracy of molecular dynamics simulations.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos