Your browser doesn't support javascript.
loading
Bioengineered small extracellular vesicles deliver multiple SARS-CoV-2 antigenic fragments and drive a broad immunological response.
Jackson, Hannah K; Long, Heather M; Yam-Puc, Juan Carlos; Palmulli, Roberta; Haigh, Tracey A; Gerber, Pehuén Pereyra; Lee, Jin S; Matheson, Nicholas J; Young, Lesley; Trowsdale, John; Lo, Mathew; Taylor, Graham S; Thaventhiran, James E; Edgar, James R.
Afiliación
  • Jackson HK; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Long HM; Exosis, Inc. Palm Beach, Palm Beach, Florida, USA.
  • Yam-Puc JC; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
  • Palmulli R; MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
  • Haigh TA; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Gerber PP; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
  • Lee JS; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.
  • Matheson NJ; Department of Medicine, University of Cambridge, Cambridge, UK.
  • Young L; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Trowsdale J; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.
  • Lo M; Department of Medicine, University of Cambridge, Cambridge, UK.
  • Taylor GS; NHS Blood and Transplant, Cambridge, UK.
  • Thaventhiran JE; Exosis, Inc. Palm Beach, Palm Beach, Florida, USA.
  • Edgar JR; Exosis, Inc. Palm Beach, Palm Beach, Florida, USA.
J Extracell Vesicles ; 13(2): e12412, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38339765
ABSTRACT
The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas / Vesículas Extracelulares / COVID-19 Límite: Animals / Humans Idioma: En Revista: J Extracell Vesicles Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas / Vesículas Extracelulares / COVID-19 Límite: Animals / Humans Idioma: En Revista: J Extracell Vesicles Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido
...