Your browser doesn't support javascript.
loading
Advancing spinal cord injury care through non-invasive autonomic dysreflexia detection with AI.
Pancholi, Sidharth; Everett, Thomas H; Duerstock, Bradley S.
Afiliación
  • Pancholi S; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
  • Everett TH; Krannert Cardiovascular Research Center, Division of Cardiovascular Medicine, IU School of Medicine, Indianapolis, USA.
  • Duerstock BS; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA. bsd@purdue.edu.
Sci Rep ; 14(1): 3439, 2024 02 10.
Article en En | MEDLINE | ID: mdl-38341453
ABSTRACT
This paper presents an AI-powered solution for detecting and monitoring Autonomic Dysreflexia (AD) in individuals with spinal cord injuries. Current AD detection methods are limited, lacking non-invasive monitoring systems. We propose a model that combines skin nerve activity (SKNA) signals with a deep neural network (DNN) architecture to overcome this limitation. The DNN is trained on a meticulously curated dataset obtained through controlled colorectal distension, inducing AD events in rats with spinal cord surgery above the T6 level. The proposed system achieves an impressive average classification accuracy of 93.9% ± 2.5%, ensuring accurate AD identification with high precision (95.2% ± 2.1%). It demonstrates a balanced performance with an average F1 score of 94.4% ± 1.8%, indicating a harmonious balance between precision and recall. Additionally, the system exhibits a low average false-negative rate of 4.8% ± 1.6%, minimizing the misclassification of non-AD cases. The robustness and generalizability of the system are validated on unseen data, maintaining high accuracy, F1 score, and a low false-negative rate. This AI-powered solution represents a significant advancement in non-invasive, real-time AD monitoring, with the potential to improve patient outcomes and enhance AD management in individuals with spinal cord injuries. This research contributes a promising solution to the critical healthcare challenge of AD detection and monitoring.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Disreflexia Autónoma / Tejido Nervioso Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Disreflexia Autónoma / Tejido Nervioso Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido