Drought priming reduces Calligonum mongolicum sensitivity to recurrent droughts via coordinated regulation of osmolytes, antioxidants, and hormones.
Plant Biol (Stuttg)
; 2024 Feb 12.
Article
en En
| MEDLINE
| ID: mdl-38345578
ABSTRACT
Pre-exposure of plants to abiotic stressors may induce stress memory and improve tolerance to subsequent stresses. Here, 3-month-old Calligonum mongolicum seedlings were exposed to drought (60 days) with (primed) or without (unprimed) early drought exposure of 50 days, to determine whether this enhances seedling resistance and investigate possible underlying mechanisms. Compared to unprimed, primed seedlings had higher biomass, shoot relative water content (15% and 22%), chlorophyll a, chlorophyll b, and carotenoids. They also had more superoxide anions (O2 -⢠) and H2 O2 scavenging mechanisms through higher activity of SOD, CAT, APX, and dehydroascorbate reductase in assimilating shoots and roots, resulting in less ROS and oxidative stress damage. Plants also had higher ABA and JA but lower SA, likely reflecting an adaptive response to subsequent stress. Primed seedlings accumulated more IAA and brassinosteroids, which may account for their better growth. Accumulation of glycine betaine, pro, and total amino acids in assimilating shoots and roots of primed seedlings led to reduced osmotic stress. Drivers of responses of non-primed and primed seedlings to drought varied. Responses of primed seedlings were primarily characterized by more photosynthetic pigments, increased oxidative scavenging of O2 -⢠and H2 O2 , more phytohormones and osmolytes. Early drought priming of drought stress memory in C. mongolicum seedlings may provide a useful management approach to improve seedling establishment in vegetation restoration programs.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Plant Biol (Stuttg)
Asunto de la revista:
BOTANICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido