Your browser doesn't support javascript.
loading
Finite element biomechanical analysis of 3D printed intervertebral fusion cage in osteoporotic population.
Wu, Jincheng; Miao, Jun; Chen, Guangdong; Xu, Hanpeng; Wen, Wangqiang; Xu, Haoxiang; Liu, Lizhu.
Afiliación
  • Wu J; Department of Emergency Trauma Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan, China, 48 Baishuitang Road, Longhua District, 571700.
  • Miao J; Tianjin Hospital, Tianjin University, Tianjin, China.
  • Chen G; Tianjin Hospital, Tianjin University, Tianjin, China.
  • Xu H; Huazhong University of Science and Technology, Wuhan, Hubei, China.
  • Wen W; The First Affiliated Hospital of Hainan Medical University, Haikou City, Hainan, China.
  • Xu H; The Second People's Hospital of Hefei, Hefei, Anhui, China.
  • Liu L; Department of Emergency Trauma Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan, China, 48 Baishuitang Road, Longhua District, 571700. 879790031@qq.com.
BMC Musculoskelet Disord ; 25(1): 129, 2024 Feb 12.
Article en En | MEDLINE | ID: mdl-38347518
ABSTRACT

OBJECTIVE:

To study the biomechanical characteristics of each tissue structure when using different 3D printing Cage in osteoporotic patients undergoing interbody fusion.

METHODS:

A finite element model of the lumbar spine was reconstructed and validated with regarding a range of motion and intervertebral disc pressure from previous in vitro studies. Cage and pedicle screws were implanted and part of the lamina, spinous process, and facet joints were removed in the L4/5 segment of the validated mode to simulate interbody fusion. A 280 N follower load and 7.5 N·m moment were applied to different postoperative models and intact osteoporotic model to simulate lumbar motion. The biomechanical characteristics of different models were evaluated by calculating and analyzing the range of motion of the fixed and cephalic adjacent segment, the stress of the screw-rod system, the stress at the interface between cage and L5 endplate, and intervertebral disc pressure of the adjacent segment.

RESULTS:

After rigid fixation, the range of motion of the fixed segment of model A-C decreased significantly, which was much smaller than that of the osteoporotic model. And with the increase of the axial area of the interbody fusion cages, the fixed segment of model A-C tended to be more stable. The range of motion and intradiscal pressure of the spinal models with different interbody fusion cages were higher than those of the complete osteoporosis model, but there was no significant difference between the postoperative models. On the other hand, the L5 upper endplate stress and screw-rod system stress of model A-C show a decreasing trend in different directions of motion. The stress of the endplate is the highest during flexion, which can reach 40.5 MPa (model A). The difference in endplate stress between models A-C was the largest during lateral bending. The endplate stress of models A and B was 150.5% and 140.9% of that of model C, respectively. The stress of the screw-rod system was the highest during lateral bending (model A, 102.0 MPa), which was 108.4%, 102.4%, 110.4%, 114.2% of model B and 158.5%, 110.1%, 115.8%, 125.4% of model C in flexion, extension, lateral bending, and rotation, respectively.

CONCLUSIONS:

For people with osteoporosis, no matter what type of cage is used, good immediate stability can be achieved after surgery. Larger cage sizes provide better fixation without significantly increasing ROM and IDP in adjacent segments, which may contribute to the development of ASD. In addition, larger cage sizes can disperse endplate stress and reduce stress concentration, which is of positive significance in preventing cage subsidence after operation. The cage and screw rod system establish a stress conduction pathway on the spine, and a larger cage greatly enhances the stress-bearing capacity of the front column, which can better distribute the stress of the posterior spine structure and the stress borne by the posterior screw rod system, reduce the stress concentration phenomenon of the nail rod system, and avoid exceeding the yield strength of the material, resulting in the risk of future instrument failure.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoporosis / Fusión Vertebral / Tornillos Pediculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Musculoskelet Disord Asunto de la revista: FISIOLOGIA / ORTOPEDIA Año: 2024 Tipo del documento: Article Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoporosis / Fusión Vertebral / Tornillos Pediculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Musculoskelet Disord Asunto de la revista: FISIOLOGIA / ORTOPEDIA Año: 2024 Tipo del documento: Article Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM