Your browser doesn't support javascript.
loading
Head injury: Importance of the deep brain nuclei in force transmission to the brain.
Delteil, Clémence; Manlius, Thais; Marle, Oceane; Godio-Raboutet, Yves; Bailly, Nicolas; Piercecchi-Marti, Marie-Dominique; Tuchtan, Lucile; Thollon, Lionel.
Afiliación
  • Delteil C; Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France. Electronic address: clemence.delteil@ap-hm.fr.
  • Manlius T; Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
  • Marle O; Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
  • Godio-Raboutet Y; Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
  • Bailly N; Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
  • Piercecchi-Marti MD; Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
  • Tuchtan L; Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
  • Thollon L; Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
Forensic Sci Int ; 356: 111952, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38350415
ABSTRACT
Finite element modeling provides a digital representation of the human body. It is currently the most pertinent method to study the mechanisms of head injury, and is becoming a scientific reference in forensic expert reports. Improved biofidelity is a recurrent aim of research studies in biomechanics in order to improve earlier models whose mechanical properties conformed to simplified elastic behavior and mechanic laws. We aimed to study force transmission to the brain following impacts to the head, using a finite element head model with increased biofidelity. To the model developed by the Laboratory of Applied Biomechanics of Marseille, we added new brain structures (thalamus, central gray nuclei and ventricular systems) as well as three tracts involved in the symptoms of head injury the corpus callosum, uncinate tracts and corticospinal tracts. Three head impact scenarios were simulated an uppercut with the prior model and an uppercut with the improved model in order to compare the two models, and a lateral impact with an impact velocity of 6.5 m/s in the improved model. In these conditions, in uppercuts the maximum stress values did not exceed the injury risk threshold. On the other hand, the deep gray matter (thalamus and central gray nuclei) was the region at highest risk of injury during lateral impacts. Even if injury to the deep gray matter is not immediately life-threatening, it could explain the chronic disabling symptoms of even low-intensity head injury.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sustancia Gris / Traumatismos Craneocerebrales Límite: Humans Idioma: En Revista: Forensic Sci Int Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sustancia Gris / Traumatismos Craneocerebrales Límite: Humans Idioma: En Revista: Forensic Sci Int Año: 2024 Tipo del documento: Article