Your browser doesn't support javascript.
loading
African swine fever virus pH240R enhances viral replication via inhibition of the type I IFN signaling pathway.
Ye, Guangqiang; Zhang, Zhaoxia; Liu, Xiaohong; Liu, Hongyang; Chen, Weiye; Feng, Chunying; Li, Jiangnan; Zhou, Qiongqiong; Zhao, Dongming; Zhang, Shuai; Chen, Hefeng; Bu, Zhigao; Huang, Li; Weng, Changjiang.
Afiliación
  • Ye G; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Zhang Z; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Liu X; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
  • Liu H; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Chen W; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Feng C; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Li J; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Zhou Q; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Zhao D; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
  • Zhang S; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Chen H; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Bu Z; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Huang L; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
  • Weng C; Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Article en En | MEDLINE | ID: mdl-38353534
ABSTRACT
African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interferón Tipo I / Fiebre Porcina Africana / Virus de la Fiebre Porcina Africana Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Virol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interferón Tipo I / Fiebre Porcina Africana / Virus de la Fiebre Porcina Africana Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Virol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos