Your browser doesn't support javascript.
loading
Effects of continuous low-speed biogas agitation on anaerobic digestion of high-solids pig manure: Performance and microbial community.
Liu, Dan; Cen, Ruxiang; Yuan, Ai; Wu, Mingxiang; Luo, Can; Chen, Manman; Liang, Xiwen; He, Tenbing; Wu, Wenxuan; He, Tengxia; Tian, Guangliang.
Afiliación
  • Liu D; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Cen R; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Yuan A; Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang, 550001, China.
  • Wu M; Agricultural Environmental Monitoring Station in Yu-ping County, Yu-ping County of Guizhou Province, 554000, China.
  • Luo C; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Chen M; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Liang X; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • He T; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Wu W; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • He T; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
  • Tian G; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Liv
J Environ Manage ; 354: 120355, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38364542
ABSTRACT
This study aimed to investigate effects of continuous low-speed biogas agitation on the anaerobic digestion (AD) performance and microbial community of high-solids pig manure (total solids content of 10%). Our results reveal that at a biogas agitation intensity of 1.10 L/g feed VS/d, CH4 production increased by 16.67% compared to the non-agitated condition, the removal efficiency of H2S reached 63.18%, and the abundance of Methanosarcina was the highest. The presence of Hungateiclostridiaceae was associated with H2S concentrations. An increasing biogas agitation intensity led to an elevated pH and a decreased oxidation-reduction potential (ORP). Acetate concentrations, pH, and ORP values indicated changes in H2S concentrations. Sedimentibacter demonstrates the potential to indicate biogas agitation intensity and pH. We demonstrate that continuous low-speed biogas agitation effectively increases CH4 production and reduces H2S concentrations in AD of high-solids pig manure, offering a potential technical pathway for developing AD processes for high-solids pig manure, it also demonstrates that AD process can reduce the risk of pathogen and parasite transmission.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reactores Biológicos / Microbiota Límite: Animals Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reactores Biológicos / Microbiota Límite: Animals Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido