Your browser doesn't support javascript.
loading
A simple, robust, broadly applicable insertion mutagenesis method to create random fluorescent protein: target protein fusions.
Pike, Andrew; Pietryski, Cassandra; Deighan, Padraig; Kuehner, Jason; Lau, Derek; Seshan, Anupama; March, Paul E.
Afiliación
  • Pike A; Department of Biology, Oberlin College and Conservatory, 173 W. Lorain St, Oberlin, OH 44074, USA.
  • Pietryski C; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
  • Deighan P; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
  • Kuehner J; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
  • Lau D; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
  • Seshan A; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
  • March PE; Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA.
G3 (Bethesda) ; 14(5)2024 05 07.
Article en En | MEDLINE | ID: mdl-38366837
ABSTRACT
A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E. coli transformation with no further procedures. Plating at high colony density yields fluorescent colonies. Plasmids purified from fluorescent colonies contain random, in-frame fusion proteins into the target gene. The plate screen also results in expressed, stable proteins. A large library of chimeric proteins was produced, which was useful for downstream research. The effect of using different fluorescent proteins was investigated as well as the dependence of the linker sequence between the target and fluorescent protein open reading frames. The utility and simplicity of the method were demonstrated by the fact that it has been employed in an undergraduate biology laboratory class without failure over dozens of class sections. This suggests that the method will be useful in high-impact research at small liberal arts colleges with limited resources. However, in-frame fusion proteins were obtained from 8 different targets suggesting that the method is broadly applicable in any research setting.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Recombinantes de Fusión / Mutagénesis Insercional / Escherichia coli Idioma: En Revista: G3 (Bethesda) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Recombinantes de Fusión / Mutagénesis Insercional / Escherichia coli Idioma: En Revista: G3 (Bethesda) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido