Your browser doesn't support javascript.
loading
Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida.
Banerjee, Deepanwita; Yunus, Ian S; Wang, Xi; Kim, Jinho; Srinivasan, Aparajitha; Menchavez, Russel; Chen, Yan; Gin, Jennifer W; Petzold, Christopher J; Martin, Hector Garcia; Magnuson, Jon K; Adams, Paul D; Simmons, Blake A; Mukhopadhyay, Aindrila; Kim, Joonhoon; Lee, Taek Soon.
Afiliación
  • Banerjee D; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Yunus IS; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Wang X; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Kim J; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Srinivasan A; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Menchavez R; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Chen Y; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Gin JW; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Petzold CJ; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Martin HG; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Magnuson JK; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
  • Adams PD; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Simmons BA; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Mukhopadhyay A; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
  • Kim J; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA. Electronic address: joonhoon.kim@pnnl.gov.
  • Lee TS; Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. Electronic address: tslee@lbl.gov.
Metab Eng ; 82: 157-170, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38369052
ABSTRACT
Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas putida Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas putida Idioma: En Revista: Metab Eng Asunto de la revista: ENGENHARIA BIOMEDICA / METABOLISMO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Bélgica