Your browser doesn't support javascript.
loading
Aviation fuel based on wastewater-grown microalgae: Challenges and opportunities of hydrothermal liquefaction and hydrotreatment.
Marangon, Bianca Barros; Castro, Jackeline de Siqueira; Calijuri, Maria Lúcia.
Afiliación
  • Marangon BB; Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitario, Viçosa, Minas Gerais, 36570-900, Brazil. Electronic address: bianca.marangon@ufv.br.
  • Castro JS; Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitario, Viçosa, Minas Gerais, 36570-900, Brazil. Electronic address: jackeline.castro@ufv.br.
  • Calijuri ML; Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitario, Viçosa, Minas Gerais, 36570-900, Brazil. Electronic address: calijuri@ufv.br.
J Environ Manage ; 354: 120418, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38382440
ABSTRACT
The current technical issues related to the conversion of algal biomass into aviation biofuel through hydrothermal liquefaction (HTL) and the upgrading of bio-oil through hydrotreatment have been reviewed and consolidated. HTL is a promising route for converting microalgae into sustainable aviation fuel (SAF). However, HTL must be followed by the hydrotreatment of bio-oil to ensure that its composition and properties are compatible with SAF standards. The fact that microalgae offer the possibility of recovering wastewater treatment resources not only makes them more attractive but also serves as an incentive for wastewater treatment, especially in countries where this service has not been universalized. The combination of SAF and wastewater treatment aligns with the Sustainable Development Goals of the United Nations, representing an advantageous opportunity for both aviation and sanitation. In this context, the utilization of HTL by-products in the concept of a biorefinery is essential for the sustainability of aviation biofuel production through this route. Another important aspect is the recovery and reuse of catalysts, which are generally heterogeneous, allowing for recycling. Additionally, discussions have focused on biomass pretreatment methods, the use of solvents and catalysts in HTL and hydrotreatment reactions, and the operational parameters of both processes. All these issues present opportunities to enhance the quantity and quality of bio-oil and aviation biofuel.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites de Plantas / Microalgas / Polifenoles Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites de Plantas / Microalgas / Polifenoles Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido