Your browser doesn't support javascript.
loading
Motor crosslinking augments elasticity in active nematics.
Redford, Steven A; Colen, Jonathan; Shivers, Jordan L; Zemsky, Sasha; Molaei, Mehdi; Floyd, Carlos; Ruijgrok, Paul V; Vitelli, Vincenzo; Bryant, Zev; Dinner, Aaron R; Gardel, Margaret L.
Afiliación
  • Redford SA; The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA.
  • Colen J; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. dinner@uchicago.edu.
  • Shivers JL; Department of Physics, University of Chicago, Chicago, IL 60637, USA.
  • Zemsky S; James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  • Molaei M; James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  • Floyd C; Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
  • Ruijgrok PV; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
  • Vitelli V; Program in Biophysics, Stanford University, Stanford, CA 94305, USA.
  • Bryant Z; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
  • Dinner AR; James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  • Gardel ML; Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
Soft Matter ; 20(11): 2480-2490, 2024 Mar 13.
Article en En | MEDLINE | ID: mdl-38385209
ABSTRACT
In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Motoras Moleculares / Modelos Biológicos Idioma: En Revista: Soft Matter Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Motoras Moleculares / Modelos Biológicos Idioma: En Revista: Soft Matter Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido