Your browser doesn't support javascript.
loading
Modeling combination therapies in patient cohorts and cell cultures using correlated drug action.
Arun, Adith S; Kim, Sung-Cheol; Ahsen, Mehmet Eren; Stolovitzky, Gustavo.
Afiliación
  • Arun AS; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA.
  • Kim SC; Yale School of Medicine, New Haven, CT 06510, USA.
  • Ahsen ME; Psychogenics, Inc, Paramus, NJ 07652, USA.
  • Stolovitzky G; Gies College of Business, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
iScience ; 27(3): 108905, 2024 Mar 15.
Article en En | MEDLINE | ID: mdl-38390492
ABSTRACT
Characterizing the effect of combination therapies is vital for treating diseases like cancer. We introduce correlated drug action (CDA), a baseline model for the study of drug combinations in both cell cultures and patient populations, which assumes that the efficacy of drugs in a combination may be correlated. We apply temporal CDA (tCDA) to clinical trial data, and demonstrate the utility of this approach in identifying possible synergistic combinations and others that can be explained in terms of monotherapies. Using MCF7 cell line data, we assess combinations with dose CDA (dCDA), a model that generalizes other proposed models (e.g., Bliss response-additivity, the dose equivalence principle), and introduce Excess over CDA (EOCDA), a new metric for identifying possible synergistic combinations in cell culture.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos