Your browser doesn't support javascript.
loading
Development of Biocompatible Digital Light Processing Resins for Additive Manufacturing Using Visible Light-Induced RAFT Polymerization.
Sarabia-Vallejos, Mauricio A; De la Fuente, Scarleth Romero; Tapia, Pamela; Cohn-Inostroza, Nicolás A; Estrada, Manuel; Ortiz-Puerta, David; Rodríguez-Hernández, Juan; González-Henríquez, Carmen M.
Afiliación
  • Sarabia-Vallejos MA; Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile.
  • De la Fuente SR; Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.
  • Tapia P; Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile.
  • Cohn-Inostroza NA; Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.
  • Estrada M; Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile.
  • Ortiz-Puerta D; Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile.
  • Rodríguez-Hernández J; Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile.
  • González-Henríquez CM; Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article en En | MEDLINE | ID: mdl-38399850
ABSTRACT
Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body's natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material's biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material's mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin's biocompatibility and bioactivity (osteogenic differentiation).
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Suiza