Your browser doesn't support javascript.
loading
One model to unite them all: Personalized federated learning of multi-contrast MRI synthesis.
Dalmaz, Onat; Mirza, Muhammad U; Elmas, Gokberk; Ozbey, Muzaffer; Dar, Salman U H; Ceyani, Emir; Oguz, Kader K; Avestimehr, Salman; Çukur, Tolga.
Afiliación
  • Dalmaz O; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
  • Mirza MU; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
  • Elmas G; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
  • Ozbey M; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
  • Dar SUH; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
  • Ceyani E; Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.
  • Oguz KK; Department of Radiology, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
  • Avestimehr S; Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.
  • Çukur T; Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey. Electronic address: cukur@ee.bilkent.edu.tr.
Med Image Anal ; 94: 103121, 2024 May.
Article en En | MEDLINE | ID: mdl-38402791
ABSTRACT
Curation of large, diverse MRI datasets via multi-institutional collaborations can help improve learning of generalizable synthesis models that reliably translate source- onto target-contrast images. To facilitate collaborations, federated learning (FL) adopts decentralized model training while mitigating privacy concerns by avoiding sharing of imaging data. However, conventional FL methods can be impaired by the inherent heterogeneity in the data distribution, with domain shifts evident within and across imaging sites. Here we introduce the first personalized FL method for MRI Synthesis (pFLSynth) that improves reliability against data heterogeneity via model specialization to individual sites and synthesis tasks (i.e., source-target contrasts). To do this, pFLSynth leverages an adversarial model equipped with novel personalization blocks that control the statistics of generated feature maps across the spatial/channel dimensions, given latent variables specific to sites and tasks. To further promote communication efficiency and site specialization, partial network aggregation is employed over later generator stages while earlier generator stages and the discriminator are trained locally. As such, pFLSynth enables multi-task training of multi-site synthesis models with high generalization performance across sites and tasks. Comprehensive experiments demonstrate the superior performance and reliability of pFLSynth in MRI synthesis against prior federated methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Aprendizaje Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Turquía Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Aprendizaje Límite: Humans Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Turquía Pais de publicación: Países Bajos