Your browser doesn't support javascript.
loading
Encapsulation of pristine and silica-coated human adipose-derived mesenchymal stem cells in gelatin colloidal hydrogels for tissue engineering and bioprinting applications.
Maciel, Marta M; Hassani Besheli, Negar; Correia, Tiago R; Mano, João F; Leeuwenburgh, Sander C G.
Afiliación
  • Maciel MM; CEB, Campus de Gualtar, Centre of Biological Engineering University of Minho, Braga, Portugal.
  • Hassani Besheli N; Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands.
  • Correia TR; Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands.
  • Mano JF; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal.
  • Leeuwenburgh SCG; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal.
Biotechnol J ; 19(2): e2300469, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38403405
ABSTRACT
Colloidal gels assembled from gelatin nanoparticles (GNPs) as particulate building blocks show strong promise to solve challenges in cell delivery and biofabrication, such as low cell survival and limited spatial retention. These gels offer evident advantages to facilitate cell encapsulation, but research on this topic is still limited, which hampers our understanding of the relationship between the physicochemical and biological properties of cell-laden colloidal gels. Human adipose-derived mesenchymal stem cells were successfully encapsulated in gelatin colloidal gels and evaluated their mechanical and biological performance over 7 days. The cells dispersed well within the gels without compromising gel cohesiveness, remained viable, and spread throughout the gels. Cells partially coated with silica were introduced into these gels, which increased their storage moduli and decreased their self-healing capacity after 7 days. This finding demonstrates the ability to modulate gel stiffness by incorporating cells partially coated with silica, without altering the solid content or introducing additional particles. Our work presents an efficient method for cell encapsulation while preserving gel integrity, expanding the applicability of colloidal hydrogels for tissue engineering and bioprinting. Overall, our study contributes to the design of improved cell delivery systems and biofabrication techniques.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Mesenquimatosas / Bioimpresión Límite: Humans Idioma: En Revista: Biotechnol J Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Mesenquimatosas / Bioimpresión Límite: Humans Idioma: En Revista: Biotechnol J Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Alemania