Your browser doesn't support javascript.
loading
Automated model building and protein identification in cryo-EM maps.
Jamali, Kiarash; Käll, Lukas; Zhang, Rui; Brown, Alan; Kimanius, Dari; Scheres, Sjors H W.
Afiliación
  • Jamali K; MRC Laboratory of Molecular Biology, Cambridge, UK. kjamali@mrc-lmb.cam.ac.uk.
  • Käll L; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Zhang R; Washington University in St Louis, St Louis, MO, USA.
  • Brown A; Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
  • Kimanius D; MRC Laboratory of Molecular Biology, Cambridge, UK. dari@mrc-lmb.cam.ac.uk.
  • Scheres SHW; MRC Laboratory of Molecular Biology, Cambridge, UK. scheres@mrc-lmb.cam.ac.uk.
Nature ; 628(8007): 450-457, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38408488
ABSTRACT
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics programs1,2. Here we present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality to those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy to those built by humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will therefore remove bottlenecks and increase objectivity in cryo-EM structure determination.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Modelos Moleculares / Microscopía por Crioelectrón / Aprendizaje Automático Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Modelos Moleculares / Microscopía por Crioelectrón / Aprendizaje Automático Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido