Your browser doesn't support javascript.
loading
Bridging length scales in organic mixed ionic-electronic conductors through internal strain and mesoscale dynamics.
Wu, Ruiheng; Meli, Dilara; Strzalka, Joseph; Narayanan, Suresh; Zhang, Qingteng; Paulsen, Bryan D; Rivnay, Jonathan; Takacs, Christopher J.
Afiliación
  • Wu R; Department of Chemistry, Northwestern University, Evanston, IL, USA.
  • Meli D; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Strzalka J; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Narayanan S; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Zhang Q; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Paulsen BD; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  • Rivnay J; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. jrivnay@northwestern.edu.
  • Takacs CJ; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. jrivnay@northwestern.edu.
Nat Mater ; 23(5): 648-655, 2024 May.
Article en En | MEDLINE | ID: mdl-38409601
ABSTRACT
Understanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy. Our results reveal that strain and structural hysteresis depend on the sample's cycling history, establishing a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviours of OMIECs. Furthermore, we uncover the equilibrium and non-equilibrium dynamics of charge carriers and material-doping states, highlighting the unexpected coupling between charge carrier dynamics and mesoscale order. These findings advance our understanding of the structure-dynamics-function relationships in OMIECs, opening pathways for designing and engineering materials with improved performance and functionality in non-equilibrium states during device operation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...