Your browser doesn't support javascript.
loading
Photothermal-Enhanced S-Scheme Heterojunction of Hollow Core-Shell FeNi2S4@ZnIn2S4 toward Photocatalytic Hydrogen Evolution.
Wang, Shikai; Zhang, Dong; Pu, Xipeng; Zhang, Lizhi; Zhang, Dafeng; Jiang, Jizhou.
Afiliación
  • Wang S; School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Sh
  • Zhang D; School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Sh
  • Pu X; School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Sh
  • Zhang L; School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Sh
  • Zhang D; School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Sh
  • Jiang J; School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research
Small ; 20(30): e2311504, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38412431
ABSTRACT
Herein, guided by the results of density functional theory prediction, the study rationally designs a hollow core-shell FeNi2S4@ZnIn2S4 (FNS@ZIS) Step-scheme (S-scheme) heterojunction for photocatalytic H2 evolution with photothermal-assisted. The hollow FNS spheres offered substrate for coating the ZIS nanosheets, which can inhibit ZIS nanosheets from agglomerating into pellet, enrich the active site, increase specific surfaces, and raise the light absorption. Notably, due to its excellent photothermal properties, FNS core generated heat unceasingly inside under visible-light irradiation and effectively prevent the heat loss of the reaction system, which increased the local temperature of photocatalysts and thus accelerated the charge migration. In addition, the S-scheme heterojunction construction via in situ growth has a tight interface, which can facilitate the separation and transfer of carriers and achieve high redox potential. Owning to the distinctive construction, the hollow core-shell FNS@ZIS S-scheme heterojunction show extraordinary stability and photocatalytic H2 evolution rate with 7.7 mmol h-1 g-1, which is ≈15.2-fold than pristine ZIS. Based on the double evidence of theoretical predictions and experimental confirmations, the photothermal effect and electron transfer mechanism of this innovative material are investigated in depth by the following infrared thermography technology and deep DFT calculations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article