Your browser doesn't support javascript.
loading
Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters.
Haddad, Lucy; Gianolio, Diego; Dunstan, David J; Liu, Ying; Rankine, Conor; Sapelkin, Andrei.
Afiliación
  • Haddad L; QMUL, Mile End Road, London E1 4NS, UK. apw813@qmul.ac.uk.
  • Gianolio D; Diamond Light Source, Diamond House Harwell Science & Innovation Campus, Didcot OX11 0DE, UK.
  • Dunstan DJ; Diamond Light Source, Diamond House Harwell Science & Innovation Campus, Didcot OX11 0DE, UK.
  • Liu Y; QMUL, Mile End Road, London E1 4NS, UK. apw813@qmul.ac.uk.
  • Rankine C; QMUL, Mile End Road, London E1 4NS, UK. apw813@qmul.ac.uk.
  • Sapelkin A; Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
Nanoscale ; 16(11): 5768-5775, 2024 Mar 14.
Article en En | MEDLINE | ID: mdl-38414278
ABSTRACT
Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido