Your browser doesn't support javascript.
loading
Effect of an innovative sorbent material coupled to continuous flow process in the protein and oxidative stability of white wines.
Ricci, Arianna; Versari, Andrea; Ragni, Luigi; Parpinello, Giuseppina P.
Afiliación
  • Ricci A; Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
  • Versari A; Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
  • Ragni L; Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
  • Parpinello GP; Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, FC, Italy. Electronic
Food Chem ; 446: 138868, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38430770
ABSTRACT
In this work the impact of an innovative protein stabilization method (TiO2-based composite sorbent material coupled with a prototype device operating under continuous flow) has been tested in terms of protein and oxidative stability of white wines. Optimal process parameters (duration 60 min; flow rate 1.5 ± 0.1 L/h in 6 cycle rates/h) ensured an average 32.5 % reduction of total proteins; the nanoporous TiO2 film supported on inert glass beads acted as selective sorbent for pathogenesis-related proteins (PRPs, 10-60 kDa) responsible for wine instability, based on the protein stability studies (heat-test) performed in the experimental wines. The stabilization process has been tested for the release of contaminants (Ti), and the innovative treatment has been proven to preserve wine from oxidation also delaying the browning onset under extreme storage conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vino Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vino Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article País de afiliación: Italia