Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species.
J Hazard Mater
; 469: 133946, 2024 May 05.
Article
en En
| MEDLINE
| ID: mdl-38442603
ABSTRACT
Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2â¢- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2â¢- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos